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 Ensuring information security is indispensable during data communication among a 
collective of entities. This requirement is exemplified in the context of online voting 
systems (OVS), which necessitate the conduction of fair and transparent elections. A 
pivotal aspect of securing the OVS involves authenticating authorized voters prior to 
vote casting and encrypting the votes before their transfer over a secure channel for 
tallying. The present study centers on the development of a mathematical model for an 
authentication scheme that can be implemented in an OVS to facilitate impartial 
elections. The devised model integrates mathematical and cryptographic principles of 
Galois fields, group codes, and pseudo-random key stream generators to formulate 
individual voter passcodes, thereby providing two-factor authentication. The proposed 
scheme is exemplified through a scenario suitable for orchestrating a medium-scale 
election involving 65,536 voters via an OVS. Furthermore, with the appropriate 
selection of inputs, the model exhibits the capacity to support large-scale elections.
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1. INTRODUCTION

Cryptology is the study of developing cryptosystems and
methods to crack the designed cryptosystems. Algorithms are
designed to encrypt and decrypt information, exchange keys
used for encryption and decryption, generate keys and hack the
cryptosystem designed [1]. These algorithms are developed
from the concepts of mathematical sciences such as finite
fields, modular arithmetic, matrices etc. and are implemented
using the programming languages [2]. The security, time and
space complexity of the developed algorithm is of main
concern in applying it in real time. The security of a
cryptosystem is mainly constituted in the cryptographic key
used to encode data and retrieve it. To safeguard the
cryptographic key accountable for the security, several key
exchange protocols are developed depending upon the number
of communicating parties. These protocols ensure the safe key
transfer over communication channels. But most of the key
exchange protocols are prone to the Man-In-The-Middle
attack which can be eradicated by providing user
authentication.
One of the practical scenarios where user authorization and

authentication are necessary is Election. Election is a fair
process of electing a candidate based on the number of votes
casted in favour. This process was manually conducted in
ancient times. Electronic Voting Machines are invaded over
time to facilitate elections by conducting them in short
duration achieving total secrecy. With further onset of

technology concerning human comfort, online voting systems
are designed which overcome congestion at polling booths and
support remote voting. Internet voting is implemented for
small scale elections [3] but the need for an efficient protocol
which could be practically implemented for large-scale
elections is prevalent.
A Voting System includes three major steps: Registration of

voters, Vote Casting and Counting. The initial step of a voting
system assures that no unauthorized voter casts the vote.
Subsequently, votes are casted by the authorized voters at the
polling booth which are stored in secret ballots. Finally, the
encrypted votes are transferred to the counting officer over a
secure channel for results. The entire framework of a secure
Voting system is designed to achieve total secrecy and
individual, eligible and universal verifiability [4, 5]. Internet
Voting apply mathematical algorithms in software to establish
the framework of a voting system [4, 6].
Porkodi and Sangavai [7] studied secure e-voting scheme

over Circulant matrices is developed assuming the authenticity
of the votes casted by the authorized voters. Falkner [8] et al.
studied the initialization phase of registration operates a
Pseudo Random Key Stream Generator (PRKG) to generate
passwords for designing individual secret QR codes for voters.
These QR Codes are employed by the voters to participate in
the elections.
A Pseudo Random Key Stream (PRKS) is a sequence of

numbers produced by a mathematical algorithm with an input
seed value. A PRKS is periodic after certain time and an
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adversary could guess the key stream with the knowledge of
the input seed value. Our aim of this paper is to develop an
authentication scheme which provides two-factor
authentication and overcome the threat of a PRKG. The
scheme applies an efficient cryptographic technique inspired
from Amiruddin et al. [9] and Verma and Jain [10] to generate
multiple keys for voters which authorize them to vote and
retain the authenticity of the voter. The authentication scheme
supports the registration phase of an online voting system
which supports medium to large scale elections.
Amiruddin et al. [9] found that key generation techniques

are proposed whose performance is measured by testing the
algorithm for its key generation speed, key randomness,
periodicity and complexity of the algorithm. Verma and Jain
[10] studied Reed Solomon codes and parity check matrices
are used in correcting passwords that are entered incorrect by
the user with minute error. The designed method prompts the
user with the correct password characters by retaining the
security. In Cody Planteen [11], a method is proposed to
develop a cryptographic key using the biometric fingerprints
of a user.
The proposed authentication scheme in this paper is

procured through the following mathematical and
cryptographic concepts:

1.1 Galois field ()

A Galois field is a field which has finite number of elements
whose order is either a prime or a prime power. The elements
of a Galois field GF(m) can be identified as polynomials of a
maximum degree of ( − ) or group of  bits which
comprises of either 0s or 1s. When the elements are in the form
of polynomials in GF(m) over a chosen irreducible
polynomial of degree  , the field operations are addition
modulo 2 and multiplication modulo 2. Due to the modulo 2
operations performed, the polynomials can be mapped to the
group of binary bits. In Galois field GF(m) , the chosen
irreducible polynomial of degree  plays an important role in
identifying the elements of the field. With the change in the
chosen irreducible polynomial, the mapping of polynomials
with their equivalent group of  bits consisting of 0s and 1s
differ [12, 13].

1.2 Subfields of ()

A subset of Galois field GF(m) is its subfield if it is a field
with respect to the same operations. The order of a subfield of
GF(m), is necessarily a power () of 2 where  divides .
Thus, the total number of subfields of a field of order m is
equal to the number of positive divisors of . The subfield of
GF(m) can be constructed by means of a primitive element
of GF(m). In the section 3 of this paper, the subfields of a
Galois field GF(8) are constructed [12, 13].

1.3 Group codes

A group code  is a collection of block codes which forms
a subgroup of an abelian group  where  <  and order of
 = . An encoding function is a mapping from  to 

where < . The set comprising of all the elements of 

which are mapped to the elements of  forms a group with
respect to XOR operation if the last ( − ) × ( −) sub
matrix of the parity check matrix of order  × ( − )

chosen is an identity matrix [13].
The rest of the paper is organized as follows: Section 2

presents the methodological approach of the proposed
authentication scheme for OVS. Section 3 illustrates the
proposed scheme through an example and describes its
application in OVM. Section 4 covers the detailed analysis of
the proposed scheme by describing its security aspects and
implementation in medium scale elections. Section 5
concludes the presented work by highlighting its uniqueness,
merits and applications.

2. PROPOSED AUTHENTICATION SCHEME FOR AN
ONLINE VOTING SYSTEM

In a fair Internet Voting, votes casted by the authorized
candidates are valid. Hence, to provide authorization to the
candidates an initial step of registration of voters is performed
before contesting the election online. During registration, a
pass code framer can be used to generate a unique pass code
for each candidate against the input ID of the individual. The
created ID pass code combination serves as the authentication
tool while casting the vote. Thus, while voting only the
authorized candidates could cast vote and the validation of the
casted vote is achieved through authentication.
Initially, this paper proposes a pass code framer which is

designed applying mathematical and cryptographic techniques
to generate multiple keys/pass codes against individual inputs
by different users. Further, an authentication scheme
employing the proposed pass code framer is developed which
is implemented in an OVS to authorize and authenticate voters.

2.1 Pass code framer

The methodological approach to generate pass code is:
Step 1: Consider a Galois Field () with an irreducible

polynomial of degree  (private to the system/central authority
(CA)).
Step 2: Calculate the number of proper subfields () of the

chosen Galois Field and their elements. The total number of
non-repeating elements in  subfields is .
Step 3: Define an encoding function :  →  ,  > 

which maps the elements of  with some elements of 

using a parity matrix  of order ( − ) × . (Private to the
CA).
Step 4: Corresponding to  distinct elements of  subfields,

 different pass codes are generated with respect to a single
parity check matrix.
The pass code generation technique is explained through the

pseudo code:

Parameters:
• Number of digits in the pass code (chosen by the

system): 
• Number of possible parity matrices: 
Inputs to generate pass code:   = ,, … , ,
• No. of 0s in the code word of  to which an element

of the subfields of  is mapped:  (private to the booth).
• No. of 1s in the code word of  to which an element

of the subfields of  is mapped:  (private to the booth).
• Prime number greater than  input by the voter: 

(private to the voter) // to support non-repetition of digits in
the pass code.
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Output:
• Array to store the obtained key/pass code values

corresponding to a booth: 

2.1.1 Pass code generation
The pseudo code to generate pass code values is:


  =   
{
 
 = % 
 = % 
  =   
{

 =  − 1 + %

}
}


The distinct users input and pass code combinations
generated for multiple voters are:

(,)   = ,, … , ,  = ,, … ,  (1)

Example:

For a single voter with input values,  = ,  =
,  = ,  = , the obtained stream values would be:
 = % = 
 = % = 
 = (3 + )% = 
 = ( + )% = 
 = (1)% = 
The pass code is: (, )

However, the input by the voter can be taken in the form of
fingerprints or unique Voter IDs. The proposed pass code
framer requires a prime number greater than k as a user input.
An algorithm could be applied essentially to convert the input
by the voter to the required prime number.

2.2 Deployment of pass code framer in the authentication
scheme for OVS

In an OVS, voter needs to be authorized to cast vote. The
voter is authorized by assigning a unique ID and pass code
combination. This combination is used to authenticate the
voter before vote casting. The proposed mathematical model
of authentication scheme employing pass code framer is:
Consider a Galois field GF(a) . The total number of

elements in the proper subfields of GF(a) is l. Consider an
encoding function e: Ba → Bb as described in step 3 of section
2.1. The total number of parity matrices is (ba)(ab).
Each distinct element of the subfields is mapped with a

unique element of Ba which is private to the booth. Therefore,
maximum number of booths possible =l.
Different pass codes are generated corresponding to distinct

elements of subfields and the chosen parity matrix. Therefore,
maximum number of voters in a single booth=number of
parity matrices= (ba)(ab).
Each voter is assigned a single booth where the private key

of the booth is a codeword of Ba which is mapped to a unique
codeword in Bb . The codeword in Bb is converted to its

decimal form which serves as the first part of the pass code.
The input by the voter: ci, number of 0s in the codeword

of Bb of the specified booth: i , number of 1s in the
codeword of Bb of the specified booth: i, is fed to the pass
code framer which yields the pass code Kij.
The pass code (ci, P, P) comprises of two segments

P, P, where,
c[i]=Voter ID,
P1=Decimal equivalent of the codeword in Bb and
P2=K[i].
The first part of the pass code is verified by converting the

decimal value to its equivalent binary value which is further
decoded to retrieve the codeword in Ba (private key of the
booth) by dropping the last ( − ) bits of the codeword in Bb.
The second part of the pass code is verified by matching the

pass code-Id combination stored in the vault.

3. IMPLEMENTATION OF THE PROPOSED
AUTHENTICATION SCHEME IN AN ONLINE
VOTING SYSTEM

The proposed method is implemented through the example
below:

Step 1:
Consider a Galois Field (8) with an irreducible

polynomial 8 +  + 3 +  +  . The total number of
elements in (8) is 256. Let  be the root of the polynomial
8 +  + 3 +  +1. Since the powers of  generate all the
elements of (8) and its order is 255 therefore  is the
primitive element of (8).
The example of identifying an element 9 of the Galois

field (8) with an irreducible polynomial 8 +  + 3 +
 + :

α9 = α.α8

= α. (α + α3 + α + )
= (5 +  + 3 + )

The vector associated with the polynomial α5 + α + α3 +
 is calculated as:

        
0 0 1 1 1 0 1 0 

The elements of (8) and the vector associated to each
element of the field is tabulated in the Table 1.

Step 2:
The number of proper subfields of GF(8) are: q =

(Nuer of positive divisors of ) −  =  , which are
F, F2 and F4.
Here, o(F) = , o(F2) =  and o(F4) = .
Let us consider one of the primitive elements of GF(8), α

for tracing the elements of the subfields F, F2 and F4.

 = {} ∪< 
55
1 >= {,} = {, }

2 = {} ∪< 
55
3 >

= {, ,85,170}
= {, ,7 + 6 + + + ,7 + 6 + + +  + }
= {, , , }
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4 = {} ∪< 
55
15 >

= 
,,17,3,51,68,85,10,119,136,

153,170,187,0,1,38


=



,, (7 +  + 3), (6 + 3 +  + ), (3 + ),

(7 +  + 3 + ), (7 + 6 +  +  + ),

(6 + ), (7 +  +  + ),

(6 + 3 +  +  + ), (7 +  + ),

(7 + 6 +  +  +  + ),

(7 + 6 +  + 3 + ),

(7 + 6 +  + 3 +  + ),

(6 +  + ), (3 +  + ) 

= 

,,,,,
,,,,,
,,,,,





The distinct elements in all the proper subfields of the
chosen Galois field could be identified only by the person who
has the knowledge of the chosen Galois field which is private
to the system. Thus, an adversary has no knowledge of the
input values which ought to be the no. of 0s and 1s in the code
words associated with the subfield elements.

Table 1. Elements of (8)

Primitive Element () 
Power 

Polynomial Vector 

 0 00000000 
0 1 00000001 
1  00000010 
  00000100 
3 3 00001000 
  00010000 
5 5 00100000 
6 6 01000000 
7 7 10000000 
8  + 3 +  +  00011101 
9 5 +  + 3 +  00111010 
10 6 + 5 +  +  01110100 
11 7 + 6 + 5 + 3 11101000 
1 7 + 6 + 3 +  +  11001101 
13 7 +  +  +  10000111 
1  +  +  00010011 
15 5 +  +  00100110 
16 6 + 3 +  01001100 
17 7 +  + 3 10011000 
18 5 + 3 +  +  00101101 
19 6 +  + 3 +  01011010 
0 7 + 5 +  +  10110100 
1 6 + 5 +  +  +  01110101 
 7 + 6 + 5 + 3 +  11101010 
3 7 + 6 + 3 +  11001001 
⋮ ⋮ ⋮ 

5 7 + 3 +  +  10001110 

Step 3:
Let us define an encoding function :8 → 10 by

(135678) = (135678910) where
9 = 1⊕  ⊕  ⊕ 6⊕ 7 and 10 = 1⊕ 3⊕ ⊕
8 . The parity check matrix is  =

[
 
 

 
 

 
 

 
 

].

Different parity matrices in an encoding function yield
different functional values for the same code word, thereby
responsible to generate different pass codes.

Step 4:
The elements of the subfields F, F2 and F4 are mapped

with the code words of B8↔B10 corresponding to the defined
encoding function in the step 3 which is depicted in the Table
2.

Table 2.Mapping of B8↔B10

Subfield  

F
00000000 
00000001 

0000000000 
0000000101 

F2

00000000 
00000001 
11010110 
11010111 

0000000000 
0000000101 
1101011010 
1101011111 

F4

00000000 
00000001 
10011000 
01001110 
00001010 
10011001 
11010110 
01000100 
10010011 
01001111 
10010010 
11010111 
11011100 
11011101 
01000101 
00001011 

0000000000 
0000000101 
1001100000 
0100111010 
0000101010 
1001100101 
1101011010 
0100010000 
1001001111 
0100111111 
1001001010 
1101011111 
1101110000 
1101110101 
0100010101 
0000101111 

Excluding the repeated elements in the subfields, a total of
16 booths are possible in the example whose private keys are
listed in the Table 3. Therefore,  = .

Table 3. Private key of each booth

Booth  

1 00000000 0000000000 
2 00000001 0000000101 
3 11010110 1101011010 
4 11010111 1101011111 
5 10011000 1001100000 
6 01001110 0100111010 
7 00001010 0000101010 
8 10011001 1001100101 
9 01000100 0100010000 

10 10010011 1001001111 
11 01001111 0100111111 
12 10010010 1001001010 
13 11011100 1101110000 
14 11011101 11011110101 
15 01000101 0100010101 
16 00001011 0000101111 

Step 5:
The voter inputs the voter ID which is sent as an input to the

pass code framer. Sequentially, the voter is mapped with one
of the booths which are uniquely identified through the
mapped code words. The number of voters that could be
assigned to a single booth is equal to the number of parity
check matrices possible through the proposed encoding
function. The input by the voter, the codeword in B8 which is
assigned to the specified booth and its corresponding code
word in B10 are fed as an input to the PRKG to compute the
required pass code. The Voter ID and the pass code
combination are noted by the voter which is used to
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authenticate the voter to cast vote. The voters who have
generated their pass codes are registered in the respective
booths and are considered to be authorized. The process is
depicted through the Figure 1. Before voting the voters are

verified at their assigned booths to validate their votes. This is
performed by capturing their ID and pass code combination
verified as illustrated in the Figure 2.

Figure 1. Authorization

Figure 2. Authentication

The pass code framer generates ID and pass code
combination in three segments where the first segment is the
ID which determines the assigned booth, the second segment
is a decimal equivalent to the code word assigned to the
respective booth which determines the correctness of the booth

and the third segment is the pass code generated through the
PRKG which is verified against the stored ID-pass code
combination. When all the three segments are not a mismatch,
the voter is considered to be authenticated and allowed to cast
vote.
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4. ANALYSIS OF THE PROPOSED SCHEME

4.1 Security aspects

In authentication schemes, passwords are deduced against
unique Ids applying a PRKG. The derived passwords are
stored in a vault to verify them against the input Ids to
authenticate the user. The other way is to generate a One Time
Pad (OTP) which authenticates the user but is valid for a
certain instant of time. The OTP generated is also a result of a
PRKG. A PRKS is periodic after a certain instant of time and
it can be cracked with the knowledge of the input seed. Also,
the password-Id combinations are stored in a vault. Hence, the
vault needs to be protected from an intruder.
In the proposed scheme, the pass code is generated in two

segments where the first part authenticates the booth and the
second segment authenticates the pass code against the input
voter Id.
Each booth is assigned a private key which is a codeword

in B8 . The assigned codeword is an element of the proper
subfields of the Galois Field GF(8). The first part of the pass
code is a decimal equivalent of the codeword in B10 which is
the encoding functional value of the private key (codeword in
B8 ) of the booth. An intruder could convert the decimal
equivalent to a code word in B10 but to reach the private key
one must have the knowledge of the group code B8 and the
encoding function which are private to the system. Hence, the
first segment of the pass code is secure.
An intruder can access the data as an authenticated user only

when both the segments of the pass code are entered correctly.
Although the second part of the pass code is a strong PRKS
generated through a PRKG but the input values to the PRKG
hail from the first part of the pas code which is resistant to
adversarial attacks. The analysis of the applied PRKG is
deployed in reference [14]. The PRKG algorithm is
implemented using a DEV C++compiler on an Intel CORE i3
processor with a speed of 1.70GHz and 4.00GB RAM using
Windows 8.1 64-bit Operating System. The time taken to
generate a single pass code through the PRKG is less than a
millisecond which ensures the efficiency of the PRKG.

4.2 Applicability of the model in medium scale elections

In the example discussed, with a change in the parity check
matrix, different pass codes can be produced with regard to the
same element in B8 . In fact, 212 different parity check
matrices can be used for generating different keys with the
same combination of GF(8) , B8 and B10 . Thus, a single
element of the subfield serves as the private key to the booth
which could accommodate 1 voters. Since the total number
of elements in the subfields of B8 are 16, therefore the total
number of voters with authorization cannot exceed 1 ∗  =
,. For the illustration provided above, the contesting of
election is feasible for a maximum of 65,536 number of
participants. Thus, the developed model is applicable in
Internet Voting to organize medium scale elections.
The proposed method can entertain a large scale election by

applying encoding function from B8 to Bm where  >  to
increase the number of voters in each booth. Also, with a
suitable choice of m in a Galois field GF(m), the number of
election participants could be increased as the number of
subfields depends on the value of m. With a change in the
chosen irreducible polynomial, the same configuration can be
used for generating different pass codes for the same election

participants.

5. CONCLUSIONS

An efficient and secure pass code generation technique is
proposed applying mathematical and cryptographic tools
whose application in an OVS is witnessed. PRKG are periodic
over a certain instant of time and rely on a predictable input
seed value. The developed authentication scheme is
advantageous over the systems which apply only Pseudo
random numbers generators to authenticate the user. Our
method ensures a two-factor authentication by generating the
pass code in two segments. The first segment of the pass code
is reliable and retains security as long as the encoding function,
Galois field and the irreducible polynomial utilized in the
method are private to the system. The developed method
facilitates authorization and authentication in medium scale
elections with a suitable choice of the chosen Galois field
GF(a) and the domain Baand co-domain Bb ,  >  of the
encoding function e and hence satisfies the important criteria
of eligibility in an e-Voting scheme. The proposed model is
also helpful in telemedicine to provide authorization and
authentication to the legitimate parties involved in an e-HCS
platform.

ACKNOWLEDGMENT

This work is supported by GITAM in the form of Dr.
M.V.V.S Murthi research fellowship for which we are grateful.

REFERENCES

[1] Tomlinson, M., Tjhai, C.J., Ambroze, M.A., Ahmed, M.,
Jibril, M. (2017). Password correction and confidential
information access system. Error-Correction Coding and
Decoding: Bounds, Codes, Decoders, Analysis and
Applications, 451-463. https://doi.org/10.1007/978-3-
319-51103-0_18

[2] Stinson, D.R., Paterson, M.B. (2019). Cryptography
Theory and Practice (4th ed.). CRC Press, Taylor &
Francis Group.

[3] Furukawa, J., Mori, K., Sako, K. (2010). An
implementation of a mix-net based network voting
scheme and its use in a private organization. In Towards
Trustworthy Elections: New Directions in Electronic
Voting. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 141-154. https://doi.org/10.1007/978-3-642-12980-
3_8

[4] Kho, Y.X., Heng, S.H., Chin, J.J. (2022). A review of
cryptographic electronic voting. Symmetry, 14(5): 858.
https://doi.org/10.3390/sym14050858

[5] Satizábal, C., Páez, R., Forné, J. (2022). Secure internet
voting protocol (SIVP): A secure option for electoral
processes. Journal of King Saud University-Computer
and Information Sciences, 34(6): 3647-3660.
https://doi.org/10.1016/j.jksuci.2020.12.016

[6] Jayanti, S., Chittibabu, K., Chaganti, P., Sekhar, C.
(2023). A novel cryptosystem of an upgraded classical
cipher and rsa algorithm for a secure and an efficient
electronic voting system. Journal of Theoretical and
Applied Information Technology, 101(4): 1568-1578.

229



http://www.jatit.org/volumes/Vol101No4/34Vol101No4
pdf.

[7] Porkodi, C., Sangavai, K. (2021). Matrix based single
authority electronic voting schemes. In Proceedings of
the First International Conference on Combinatorial and
Optimization, ICCAP 2021, Chennai, India.
http://doi.org/10.4108/eai.7-12-2021.2314706

[8] Falkner, S., Kieseberg, P., Simos, D.E., Traxler, C.,
Weippl, E. (2014). E-voting authentication with QR-
codes. In Human Aspects of Information Security,
Privacy, and Trust: Second International Conference,
HAS 2014, Held as Part of HCI International 2014,
Heraklion, Crete, Greece, Springer International
Publishing, 2: 149-159. https://doi.org/10.1007/978-3-
319-07620-1_14

[9] Amiruddin, A., Ratna, A.A.P., Sari, R.F. (2019).
Construction and analysis of key generation algorithms
based on modified Fibonacci and scrambling factors for
privacy preservation. International Journal of Network
Security, 21(2): 250-258.

https://doi.org/10.6633/IJNS.201903_21(2).09
[10] Verma, I., Jain, S. (2016). Biometric based key-

generation system for multimedia data security. In 2016
3rd International Conference on Computing for
Sustainable Global Development (INDIACom), New
Delhi, India, pp. 864-869.
https://ieeexplore.ieee.org/abstract/document/7724387.

[11] Cody Planteen. (2019). Primitive elements and
irreducible polynomials of GF (256).
https://codyplanteen.com/notes/rs.

[12] Lidl, R., Niederreiter, H. (1994). Introduction to Finite
Fields and Their Applications. Cambridge University
Press. https://doi.org/10.1017/CBO9781139172769

[13] Tremblay, J.P., Manohar, R. (1997). Discrete
Mathematical Structures with Applications to Computer
Science. TATA McGraw-Hill Edition.

[14] Jayanti, S., Chittibabu, K., Akkapeddi, C.S. (2022).
Pseudorandom numbers generation: An implementation
to a secure cryptosystem. Neuro Quantology, 20(9): 944-
947. https://doi.org/10.14704/nq.2022.20.9.NQ440104 

230


