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I - Year/1-Semester as per CBCS

Differential Equations

p—

Course Outcomes
After successful completion of this course, the student will be able to;
1. Solve linear differential equations

2. Convert non exact homogeneous equations to exact differential equations by using integrat-
ing factors.

3. Know the methods of finding solutions of differential equations of the first order but not of
the first degree.

4. 5(?1\": higher-order linear differential equations, both homogeneous and non homogeneous,
with constant coefficients.

5. Understand the concept and apply appropriate methods for solving differential equations.
[_Uﬂit-l: Differential Equations of first order and first degree)

Linear Differential Equations; Differential equations reducible to linear form; Exact differential
equations; Integrating factors; Change of variables.
(Unit-I1: Orthoginal Trajectories Differential Equations of first order but not of the first degreq
Equations solvable for p; Equations solvable for y; Equations solvable for x; Equations that donot
contain x (or y); Equations homogeneous in x and y; Equations of the first degree in x andy—
Clairaut’s Equation.

[ Unit-III: Higher order linear differential equations-I ]
Solution of homogeneous linear differential equations of erder n with constant coe fficients; Solu-
tion of the non-homogeneous linear differential equations with constant coefficients by means of
polynomial operators, General Solution of f{D)y=0.

. : :
General Solution of f{D)y = Q when Q is a function of X, ?(Ej is expressed as partial fractions.

PI of f(D)y = Q when Q=be™, P.I. of f{(D)y = Q when Q is b sinax or b cos ax.
{Unir-l\f':Higher Order Linear Differential Equaﬁuns-]lJ
Solution of the non-homogeneous linear differential equations with constant coefficients.
PL of f(D) y = Q when Q =bx"
P of f(D) y = Q when Q=¢™V, where V is a function of x.
PL of (D) y = Q when Q = xV, where V is a function of x.
Pl of f{D) y=Q when Q=x"V ,when Visa function of x.
ﬁjnit-\f: Higher Order Linear Differential Equatinns-[ll]

Method of variation of parameters; Linear Differential Equations with non-constant coefficients;
The Cauchy-Euler Equation, Legendre’s linear ¢q uations, miscellaneous differential equations.

il
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Introduction
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(i osEcTIVES {4

1. Identify origins and applications of differential equations.

2. Describe what is meant by solutions of Differential Equations.

3. Discuss what is meant by Initial-Value Problems, Existence and Uniqueness of solutions,
4, Recognize order and degree and classify ordinary di?erential equations.

5.  Evaluate first order differential equations including separable, homogeneous.

(i1 vtropucTion K4

The Mathematical model of differential equation represents in solving the problems faced not only
in Physics, Chemistry, Economics and many engineering branches but also in Psychology and
Biology, The study of differential equations playing crucial role in mathematics, and in view of the
applications, in other sciences too, The role of differential equations is unique in suggesting solu-
tions to many difficult problems in other sciences quickly and easily.

If we want to solve an engineering problem (usually of a physical nature), we first have to
formulate the problem as a mathematical expression in terms of variables, functions, and equa-
tions, Such an expression is known as a mathematical model of the given problem. The process
of setting up a model, solving it mathematically, and interpreting the result in physical or other
terms is called mathematical modeling or, briefly, modeling.

A model is very often an equation containing derivatives of an unknown function, Such a
model is called a differential equation, We then want to find a solution (a function that satisfies
the equation), explore its properties, graph it, find values of it, and interpret it in physical terms so
that we can understand the behavior of the physical system in our given problem. However,

before we can tum to methods of solution, we must first define some basic concepts needed
throughout this chapter.
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of the methods of colving difTerent il eq

ow some of the v
dN _ _Na represents the decay of radio active elemen
s,

|.  The differential equation a9
: |
2. Thedifferential equation xy' +y' +x

aerodynamics and so on.
dv
F=M—~-
dt

many
Let us observe h

y =0 arises in the field of mechanics, Elc‘:lﬁqiy heq

dm
3. Thedifferential equation VI represents the thrust on a rocket resulting fon

icction of gases.
¢jection of g o . ' 3y N 8ty » EI‘P' 8n’m
In quantammechanics, the partial differential equation x: oy oz " h? '{E“"]\v:ﬂ

4,
is used to find the wave function. This is known as scrodinger wave equation,
dNi : » o
5. The differential equation ?'= kN;(N-N;) Tis used by medical scientists to find the
ber of infected persons at any time to control the spread of infectious diseases,
6. In medical sciences, the rate of growth of tumors is determined by using the different)

equation, % =ke™"V,

———— . . dv dv alv_nl

7.  The partial differntial equation, ox? + 2y’ T a2 s called as Laplace equation arisesiy
the study of heat, electricity, gravitation, aerodynamics and so on.

o . o d*Q - dQ 1
B. Thedifferntial equation LF + R—-E+ EQ =E,cosot represents the oscillation of electric-

ity in circuits containing inductors, resistors and capacitors.

(1.2 DIFFERENTIAL EQUATIONS <4

1.2.1 Basic Concepts

In finding the solutions of differential 1 i :
ave givea below: €quations we can integrate many functions. Some of Integrants

x" +]

1) [x"dx= :
) [x"dx w1 on#-l 2) j-;dx=lng]x|+c
3] {a . =gt
) Je dﬂf te (b) [log xdx=xlog x - x +¢
4} I’l:dx= a
log.a ' * 5) [sinxdx=—-cosx+¢

6) Jeosxdx=sinx 4c
B.} JEDStczde.:-cutx +e
10) Imtxcnsccxdx-_-

7) [sec? xdx = Tan x +¢
9) [secx Tan x dx =$ec X +c¢
~COSeC X +¢

[

—l--..___.-!"":

LR |
—
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o

1) [tan x dx =-log|cosx|+c (or) logscex|+c
12) Jeot xdx = log [sinx|+c
13) Ise:xdx={

log |secx-+tanx|+¢ (or)

log tan %+ %)

log |cos ec x~cot x|+ ¢ (or)

dx =
14yi conee x dx [log tan 3| +¢
15) [ sinhxdx=coshx+c 16) [coshx dx=sinhx+¢
17) [sech®x=tan hx + ¢ 18) [cosech’x dx=~cothx+¢

19) [sechx tanhxdx=~sechx+c
20) [ cosechxcothxdx=~cosechx+c

| Y it e -1X
21) Jﬁ? = (or)—cos :-H:
-I e - _11 ax
22) fﬁ‘h--sm 2 +e (oeos =+
| -1 X

1 dx=ltan"£+l: 24}] =dx =—cot™ —+c
al+x? a al+x? a a

») |5
-1 1 aX
—dx—-sec 1Zic ———dx =—cosec” —+¢
25) IJ: . 26) jm 5 5
—l#luglx—-a‘+c.::=-a
2a Xx+a
1 X -

arx -1
,X<a=—tanh™ —+¢
a-x a a

x+1ﬂ( +a]|+c.
= -1 X T ol
3D}Imd3 cosh a+¢{ur)logx+«.l'x a|+c
2
31) [va?-x? dx=%«.‘a! -x* +%sin"%+c
F
32) Haz+x’dx=% n’+x’+%lug|x+\-‘a‘+xn +¢
2

33) j».l'x’ ~a? dx=%ﬂ‘x‘—n’—%lug|x+~fu’—a’ +C

34) l dx log|f(x)[+c  35) [[f(x)] f'(x)dx=

Za

dx =sinh™ '—+c (or) log

29)[_‘{7

Lf(_)i+cn¢=-1
+1

L
s BT
e

|5 T M

Lt ol "
——y
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Differential Equations

3. =xcosx+2sinX+¢ X +¢;

4. l{x-[}e:‘+c,x+c,
¢, +¢; 's:—-—[c msx)

ﬁ.'r outcomes ¢4

Fnd the complete solution of a nonhomogeneous differential equation with constant coeffi-
cients by the method of undetermined coefTicients.

Find the complete solution of a differential equation with constant coefficients by variation of

@ murieLe croick questions <«

1. Which one of the following is Cauchy-Euler’s Differential Equation ()
dn dn-ly d dl‘l n=1 d
@ L STty =Q) O d g g TV O

L] =l
(c) anxﬂ :_x%+aa_lxn-l d n_5:+___+a,xg% +a,y =Q(x)

a n-l
(d) k,(ax +b)" %I—f-+ k. (ax+b)"" ij:n%r+ kY =Q(x)
2. Using the method of variation of parameters for the particular solution to the D.E. is
JO0<x<n/2 ()

1
Sl
Y Y nax

(a) %sin 2x logsin2x + %xcﬁsix (b) %nnsixlug cos2x + %xsinlx

3 3
(c) Ismleﬁgsmh —%xmslx (d) %msix]ugcuslx—%xsin 2x
2
3. Thesolutmnuf%ﬂ’d—ﬂ}y 0,if P+Qx=01s { ]
(a) y=x (b) y=¢* (c) y=e™ (d) y=x*
RO . . .
4, Thesuluhnnuf—:+P—+Qy=ﬂ.lfl—P+Q='ﬂ'IS ()
dx dx
(a) y=x (b) y=x* (c) y=¢' (d) y=¢"
5. Ify=xisasolutionof x*y" +xy' -y =0, then the second lincarly Independent solution is
()
2 ! 2
(2) 3 (b) ~ (c) e* (d) x

405

-
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— Linear Differential Equations with Non Constant Coefficients

6. If y(x)=e"V(x) is a particular solution of the D.E.

d
:: E: +16y = (Zx +11x" 4+ 21 % k** hien V(x) is [T-JAM-2011] ( )
S x % xd  xM
e e . Lo
{"1] ¢|X+C1 3 12 22 {b] CiXx—=c, 3 2
Is Ku
o) GRESe oy * 22 (d) None of these

Ix

7. Particular Integral of the D.E y"' —4y' +4y =2 ;¢ o
X

(a) e*(x +logx) () e”(-x-logx)  (c) e*(-x ~logx)  (d) e (x+logx)

§ Ifthe D.E. y" +Py' +Qy=0 and 2+ 2Px + x2 =0 then one of the solutions of the ab are

DE.is J
(a) y=¢’ (b) y=e™ (c) y=x d) y=x2
9. Oneofthe solutions of the D.E. x*y" +xy' —y=0 is ()
1 1
8y == (b) xz_‘_; (c 1+i- () f_.lg
. dy . dy ; o
10. The particular Integral of the D.E. e R PE+Q}'= R is Au +BV, by variation of param-
:tcrsmethod, the value of “A’ is & )
Oyve Olmve  Olgar @lee
u‘hf -V, uV, —Vu, v, - Vu, ) uV, + Vu,
Il. By using vanatmn nf parameters methud the value of C.F. of the
kx 1)D? - xD+I]+y..(x 1) is ()
@ ce™ -c,x  (b) ce™ +cyx (c) c,e* +c,x° (d) ce™ +¢,x?
2. Complementary function of the D.E. (1-x)y"' +xy' —y = 2(x -1)e is ()
®) cx*+ce*  (b) et +c,x (c) cx+c,x”! (d) ¢,x +¢c,e"

dx
13. The value of *x’ for the system of D.E. E**Tﬁﬂf Oand —“2“ =Sy=0is ()

(@) ¢ (e, cost +¢,sint) (b) a‘“(clcn:aH::lsmt)
(€) e(c, sint +1t) (d) e*(c,cost+1)
r
4. The value of ‘y’ for the system of Differential equations zjx—y—j—i—‘ty 2x and
by dz
I,,_'"'da“‘k 0is ()
() (e, +o,x et Fe,e7 2 +% (b) (e, +0ax)e* +oye™2 -2
© Ce’ + [t:2 +eyx Je®*2 4 3x (d) None of these
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15.

Complementary function of the D.E. x2y' —6xy' +12y=x 18 ()

(a) et +c;x° () ce* +epx! (©) ¢x* +epx* (d) &x* +ex’ |
16. Solution of the D.E. xiy'" = 3xy' +4y=0is ()
(a) (:, +c:x’lugx) (b) (::,+r:,1+r:‘):x2
(©) (c, +¢,logx)x (d) (c, +c, logxx’
17. Solutionofthe D.E. x?y" +xy' —4y=0 is ()
@ cx+ex”  (b) ex” +ex7 (c) ex* —epx” (d) cifz +ex™
18. Complementary function of the D.E x’y"'! ~3x”y"! +6xy' —6y=(logx)"is ()
(a) c,e* +c;x +cx” (b) ce”* +Cyx +CX’
(©) Cx+Cx* +e5x° (d) ¢,x* +Cyx* +C5X°
19. Solution of the D.E. (x +1)*y" —d(x+1)y' +6y=01s ()
(a) ¢,(x+1)* +cy(x+1)’ (b) ¢ (x+1)+c(x+1)°
(©) ¢, (x+1)+c (x+1)’ (d) None of these
20. Solution of the D.E. (x2D? - 5xD +8)y =2x’is ()
(a) € x+C,x° —2x (b) f:,x: - c,x: -ij
(©) ex* +cpx* —2x (d) 6%’ +epx" - 2x
M‘T::} 2. () 3. (a) 4. (d) 5. (b)
6. a) 7.(b) 8. (d) 9. (c) 10. (a)
11. (b) 12.(d) 13. (a) 14. (b) 15. (¢)
16.(d) 17. (b) 18. (<) 19. (a) 20. (d)
408 2 :
R
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